Single Cell Analysis of Inflammation

Understanding cellular heterogeneity in response to an injury,biomaterial implantation and/or drug delivery is instrumental to developing a successful regenerative medicine treatment. Therefore, we regularly take advantage of techniques such as high dimensional flow cytometry and particle tracking using confocal microscopy to fully capture such responses.


As single cell analytical techniques evolve the ability to capture a dizzying array of variables (i.e. high dimensional flow cytometry, mass cytometry, single cell RNA seq), our ability to analyze, digest and understand this information becomes a major hurdle towards gaining valuable insights from the data. Many dimensionality reduction and clustering techniques have been, and continue to be, developed to make accurate and insightful conclusions from such data sets. However, many of these techniques are severely underutilized outside the field of Immune Biology. We are pioneering a growing movement in the field of Regenerative Medicine to apply some of these analysis techniques to capture subtle immune cell heterogeneity in the context of inflammation and wound healing that otherwise would have been overlooked. This helps us understand how immune cell heterogeneity responds to inflammation and affects tissue regeneration which informs our development of immunomodulatory therapeutics.

Intravital and Confocal Imaging

We have extensively utilized the dorsal skinfold window chamber model (a.k.a. “backpack”) for development of appropriate biomaterial-based biomolecular delivery strategies for targeted recruitment of MP populations and for assessing their contributions to microvascular growth and remodeling. This chronic window chamber model permits both systemic and localized in vivo assessment of dynamic interactions of engineered materials with surrounding tissues in repeated measures during the initial 2-3 weeks after implantation. Cellular and molecular mechanisms involved in microvascular remodeling and the early inflammatory host response to pro-angiogenic stimulation can be assessed by means of in situ intravital fluorescence microscopy and end point flow cytometry analysis of implanted materials as well as tissue compartments in direct contact with or at various distances from the biomaterial. For a recent example of how these approaches may be applied, please see our recent paper.

Lipid Metabolomics

We are using high-through-put lipid chromatography and mass spectrometry (LC-MS) analysis to investigate membrane metabolism and signaling through sphingolipids. We use sickle red blood cells and adult stem cells as model systems to gain insight into disease pathology and therapeutic cell potency respectively. We believe that our integrated systems-based research approach can compliment existing knowledge bases linking sphingolipids to wife range of biological processed, including cell death mechanisms, formation of inflammatory membrane microparticles, and secretion of soluble signals. For broader discussion of our interests in systems based approaches to understand pathogenic mechanisms and to find ways to induce pro-regenerative signaling, see our previous review paper.

Preclinical Modeling

Traumatic injuries resulting from ischemic damage, nerve transection injuries, or volumetric defects in bone and soft tissues are an intractable problem. Surgical reconstruction can lead to extensive morbidity, muscle fibrosis and diminished limb function owing to chronic muscle strength deficits. Even minor damage and or overuse of supporting connective tissues such as the rotator cuff tendon, and associated mechanical unloading, results in disorganized tissue remodeling, gradual fatty/fibrous degeneration and strength deficits. And, as the sequelae of traumatic injuries increase at a disproportionate rate with advancing age, the burden of musculoskeletal injury to our aging population is increasingly severe. Our lab develops experimental models of musculoskeletal injury in order to develop newer, more highly effective treatments. For the latest insights into treatments that harness innate immune responses, please check out our recent review paper.